AboutNeuron TypesElectrophysiology PropertiesArticlesFAQsData/APIGet Involved

Medial entorhinal cortex layer II stellate cell

Electrophysiological properties of Medial entorhinal cortex layer II stellate cells from literature:

Neuron electrophysiology data values (Table form)

Neuron Type Neuron Description Ephys Prop Article Extracted Value Standardized Value Content Source
Medial entorhinal cortex layer II stellate cell medial entorhinal cortex layer II regular-adapting stellate cell adaptation percent (last/first ISI) Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. (NeuroElectro data) (PubMed) 35.0 ± 15.0 (15) 35.0 (ratio) Data Table
Medial entorhinal cortex layer II stellate cell ADP amplitude Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 6.3 ± 0.9 (18) 6.3 (mV) Data Table
Medial entorhinal cortex layer II stellate cell ADP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 1.3 ± 0.2 (26) 1.3 (mV) Data Table
Medial entorhinal cortex layer II stellate cell ADP amplitude Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. (NeuroElectro data) (PubMed) 2.2 ± 0.3 (18) 2.2 (mV) Data Table
Medial entorhinal cortex layer II stellate cell ADP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 1.7 ± 0.4 (66) 1.7 (mV) Data Table
Medial entorhinal cortex layer II stellate cell Stellate-like “Sag” neurons in layer II of medial entorhinal cortex AHP amplitude Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. (NeuroElectro data) (PubMed) 2.0 ± 0.7 (5) 2.0 (mV) Data Table
Medial entorhinal cortex layer II stellate cell AHP duration Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) 74.9 ± 4.1 (13) 74.9 (ms) Data Table
Medial entorhinal cortex layer II stellate cell AHP duration Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 54.8 ± 5.3 (18) 54.8 (ms) Data Table
Medial entorhinal cortex layer II stellate cell AHP duration Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) 64.3 ± 3.9 (11) 64.3 (ms) Data Table
Medial entorhinal cortex layer II stellate cell AHP voltage Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) -59.2 ± 0.6 (13) -59.2 (mV) Data Table
Medial entorhinal cortex layer II stellate cell AHP voltage Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) -60.9 ± 0.7 (11) -60.9 (mV) Data Table
Medial entorhinal cortex layer II stellate cell fast AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -7.0 ± 0.5 (66) 7.0 (mV) Data Table
Medial entorhinal cortex layer II stellate cell fast AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -10.0 ± 0.6 (26) 10.0 (mV) Data Table
Medial entorhinal cortex layer II stellate cell fast AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -9.4 ± 0.4 (26) 9.4 (mV) Data Table
Medial entorhinal cortex layer II stellate cell fast AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -7.6 ± 0.8 (66) 7.6 (mV) Data Table
Medial entorhinal cortex layer II stellate cell Medial entorhinal cortex layer II projection neurons fast AHP amplitude Membrane properties of identified lateral and medial perforant pathway projection neurons. (NeuroElectro data) (PubMed) 8.5 ± 0.5 (32) 8.5 (mV) Data Table
Medial entorhinal cortex layer II stellate cell fast AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -9.2 ± 1.0 (26) 9.2 (mV) Data Table
Medial entorhinal cortex layer II stellate cell fast AHP amplitude Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. (NeuroElectro data) (PubMed) 6.1 ± 0.6 (18) 6.1 (mV) Data Table
Medial entorhinal cortex layer II stellate cell fast AHP amplitude from resting Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 1.7 ± 1.2 (18) 1.7 (mV) Data Table
Medial entorhinal cortex layer II stellate cell FI slope Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 45.0 ± 4.0 (18) 45.0 (Hz/nA) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 111.6 ± 29.0 (66) 111.6 (ms) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 20.7 ± 3.3 (26) 20.7 (ms) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 28.6 ± 2.9 (26) 28.6 (ms) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 58.3 ± 5.8 (66) 58.3 (ms) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 18.1 ± 1.3 (26) 18.1 (ms) Data Table
Medial entorhinal cortex layer II stellate cell Medial entorhinal cortex layer II projection neurons input resistance Membrane properties of identified lateral and medial perforant pathway projection neurons. (NeuroElectro data) (PubMed) 84.0 ± 14.0 (32) 84.0 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell Stellate-like “Sag” neurons in layer II of medial entorhinal cortex input resistance Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. (NeuroElectro data) (PubMed) 28.2 ± 3.3 (5) 28.2 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -47.1 ± 2.7 (66) -- Data Table
Medial entorhinal cortex layer II stellate cell input resistance Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 31.9 ± 4.8 (26) 31.9 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 31.7 ± 4.1 (26) 31.7 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. (NeuroElectro data) (PubMed) 55.2 ± 3.9 (45) 55.2 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. (NeuroElectro data) (PubMed) 32.2 ± 11.2 (46) 32.2 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell medial entorhinal cortex layer II regular-adapting stellate cell input resistance Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. (NeuroElectro data) (PubMed) 149.0 ± 16.0 (15) 149.0 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 96.0 ± 12.0 (18) 96.0 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 53.1 ± 5.1 (66) 53.1 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. (NeuroElectro data) (PubMed) 53.5 ± 3.1 (18) 53.5 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 29.4 ± 3.4 (26) 29.4 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. (NeuroElectro data) (PubMed) 43.9 ± 3.2 (45) 43.9 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell Entorhinal cortex layer 2/3 stellate EGFP-positive excitatory neurons input resistance Selective functional interactions between excitatory and inhibitory cortical neurons and differential contribution to persistent activity of the slow oscillation. (NeuroElectro data) (PubMed) 149.0 ± 16.0 (16) 149.0 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell input resistance Enhanced actions of adenosine in medial entorhinal cortex layer II stellate neurons in temporal lobe epilepsy are mediated via A(1)-receptor activation. (NeuroElectro data) (PubMed) 60.9 ± 1.3 (19) 60.9 (MΩ) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -7.4 ± 1.3 (26) 7.4 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP amplitude Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. (NeuroElectro data) (PubMed) 10.9 ± 0.5 (18) 10.9 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -5.7 ± 1.2 (26) 5.7 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -4.6 ± 0.4 (26) 4.6 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -8.8 ± 0.4 (66) 8.8 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -10.0 ± 0.6 (66) 10.0 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP amplitude from resting Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) -1.7 ± 0.2 (18) 1.7 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP duration Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 26.2 ± 1.5 (26) 26.2 (ms) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP duration Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 32.3 ± 2.9 (26) 32.3 (ms) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP duration Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 71.0 ± 13.0 (66) 71.0 (ms) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP duration Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 70.0 ± 7.5 (66) 70.0 (ms) Data Table
Medial entorhinal cortex layer II stellate cell medium AHP duration Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 26.7 ± 2.4 (26) 26.7 (ms) Data Table
Medial entorhinal cortex layer II stellate cell medial entorhinal cortex layer II regular-adapting stellate cell membrane time constant Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. (NeuroElectro data) (PubMed) 20.8 ± 2.8 (15) 20.8 (ms) Data Table
Medial entorhinal cortex layer II stellate cell membrane time constant HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. (NeuroElectro data) (PubMed) 9.3 ± 0.9 (45) 9.3 (ms) Data Table
Medial entorhinal cortex layer II stellate cell membrane time constant Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. (NeuroElectro data) (PubMed) 8.5 ± 2.2 (46) 8.5 (ms) Data Table
Medial entorhinal cortex layer II stellate cell membrane time constant Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 11.9 ± 1.1 (26) 11.9 (ms) Data Table
Medial entorhinal cortex layer II stellate cell membrane time constant Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 11.7 ± 0.8 (66) 11.7 (ms) Data Table
Medial entorhinal cortex layer II stellate cell Stellate-like “Sag” neurons in layer II of medial entorhinal cortex membrane time constant Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. (NeuroElectro data) (PubMed) 16.7 ± 0.8 (5) 16.7 (ms) Data Table
Medial entorhinal cortex layer II stellate cell membrane time constant Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 10.6 ± 0.6 (26) 10.6 (ms) Data Table
Medial entorhinal cortex layer II stellate cell membrane time constant Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 11.5 ± 0.7 (66) 11.5 (ms) Data Table
Medial entorhinal cortex layer II stellate cell membrane time constant Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 8.3 ± 1.5 (26) 8.3 (ms) Data Table
Medial entorhinal cortex layer II stellate cell Medial entorhinal cortex layer II projection neurons membrane time constant Membrane properties of identified lateral and medial perforant pathway projection neurons. (NeuroElectro data) (PubMed) 16.6 ± 1.7 (32) 16.6 (ms) Data Table
Medial entorhinal cortex layer II stellate cell Stellate-like “Sag” neurons in layer II of medial entorhinal cortex other Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. (NeuroElectro data) (PubMed) 50.1 ± 4.4 (5) 50.1 (None) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) -59.1 ± 0.9 (18) -59.1 (mV) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. (NeuroElectro data) (PubMed) -60.2 ± 1.1 (18) -60.2 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medial entorhinal cortex layer II regular-adapting stellate cell resting membrane potential Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. (NeuroElectro data) (PubMed) -72.3 ± 0.7 (15) -72.3 (mV) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -64.6 ± 0.8 (26) -64.6 (mV) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. (NeuroElectro data) (PubMed) -68.5 ± 0.6 (45) -68.5 (mV) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -61.4 ± 0.9 (66) -61.4 (mV) Data Table
Medial entorhinal cortex layer II stellate cell Medial entorhinal cortex layer II projection neurons resting membrane potential Membrane properties of identified lateral and medial perforant pathway projection neurons. (NeuroElectro data) (PubMed) -65.3 ± 0.3 (32) -65.3 (mV) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -58.8 ± 0.6 (66) -58.8 (mV) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential Enhanced actions of adenosine in medial entorhinal cortex layer II stellate neurons in temporal lobe epilepsy are mediated via A(1)-receptor activation. (NeuroElectro data) (PubMed) -61.0 ± 0.3 (19) -61.0 (mV) Data Table
Medial entorhinal cortex layer II stellate cell Entorhinal cortex layer 2/3 stellate EGFP-positive excitatory neurons resting membrane potential Selective functional interactions between excitatory and inhibitory cortical neurons and differential contribution to persistent activity of the slow oscillation. (NeuroElectro data) (PubMed) -72.3 ± 0.6 (16) -72.3 (mV) Data Table
Medial entorhinal cortex layer II stellate cell Stellate-like “Sag” neurons in layer II of medial entorhinal cortex resting membrane potential Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. (NeuroElectro data) (PubMed) -55.1 ± 0.6 (5) -55.1 (mV) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -65.8 ± 0.5 (26) -65.8 (mV) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -65.0 ± 0.9 (26) -65.0 (mV) Data Table
Medial entorhinal cortex layer II stellate cell resting membrane potential Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. (NeuroElectro data) (PubMed) -61.5 ± 3.2 (46) -61.5 (mV) Data Table
Medial entorhinal cortex layer II stellate cell rheobase Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 170.0 ± 33.5 (26) 170.0 (pA) Data Table
Medial entorhinal cortex layer II stellate cell rheobase Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) 246.2 ± 21.6 (13) 246.2 (pA) Data Table
Medial entorhinal cortex layer II stellate cell rheobase Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 181.1 ± 24.5 (66) 181.1 (pA) Data Table
Medial entorhinal cortex layer II stellate cell rheobase Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 172.8 ± 28.7 (26) 172.8 (pA) Data Table
Medial entorhinal cortex layer II stellate cell rheobase Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 186.7 ± 33.9 (26) 186.7 (pA) Data Table
Medial entorhinal cortex layer II stellate cell rheobase Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) 181.8 ± 18.8 (11) 181.8 (pA) Data Table
Medial entorhinal cortex layer II stellate cell rheobase Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 166.4 ± 19.2 (66) 166.4 (pA) Data Table
Medial entorhinal cortex layer II stellate cell sag ratio Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 0.07 ± 0.01 (66) -- Data Table
Medial entorhinal cortex layer II stellate cell Stellate-like “Sag” neurons in layer II of medial entorhinal cortex sag ratio Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. (NeuroElectro data) (PubMed) 44.2 ± 3.3 (5) 0.442 (ratio) Data Table
Medial entorhinal cortex layer II stellate cell sag ratio Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 66.0 ± 4.0 (18) 0.66 (ratio) Data Table
Medial entorhinal cortex layer II stellate cell Medial entorhinal cortex layer II projection neurons sag ratio Membrane properties of identified lateral and medial perforant pathway projection neurons. (NeuroElectro data) (PubMed) 0.72 ± 0.02 (32) 0.72 (ratio) Data Table
Medial entorhinal cortex layer II stellate cell sag ratio Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 0.08 ± 0.02 (26) -- Data Table
Medial entorhinal cortex layer II stellate cell sag ratio Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 0.065 ± 0.03 (26) -- Data Table
Medial entorhinal cortex layer II stellate cell sag ratio HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. (NeuroElectro data) (PubMed) 0.62 ± 0.01 (45) 0.62 (ratio) Data Table
Medial entorhinal cortex layer II stellate cell medial entorhinal cortex layer II regular-adapting stellate cell sag ratio Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. (NeuroElectro data) (PubMed) 31.9 ± 2.9 (15) 0.319 (ratio) Data Table
Medial entorhinal cortex layer II stellate cell Medial entorhinal cortex layer II projection neurons spike amplitude Membrane properties of identified lateral and medial perforant pathway projection neurons. (NeuroElectro data) (PubMed) 106.0 ± 1.0 (32) 106.0 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 75.4 ± 2.8 (66) 75.4 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 71.7 ± 1.0 (26) 71.7 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 72.1 ± 1.0 (26) 72.1 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) 41.9 ± 1.7 (11) 41.9 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 75.7 ± 1.8 (66) 75.7 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss. (NeuroElectro data) (PubMed) 3.2 ± 0.66 -- Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. (NeuroElectro data) (PubMed) 81.7 ± 2.1 (18) 81.7 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. (NeuroElectro data) (PubMed) 75.7 ± 5.1 (46) 75.7 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Enhanced actions of adenosine in medial entorhinal cortex layer II stellate neurons in temporal lobe epilepsy are mediated via A(1)-receptor activation. (NeuroElectro data) (PubMed) 97.4 ± 1.0 (19) 97.4 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss. (NeuroElectro data) (PubMed) 11.4 ± 0.51 -- Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) 45.8 ± 1.0 (13) 45.8 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medial entorhinal cortex layer II regular-adapting stellate cell spike amplitude Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. (NeuroElectro data) (PubMed) 85.6 ± 1.2 (15) 85.6 (mV) Data Table
Medial entorhinal cortex layer II stellate cell Stellate-like “Sag” neurons in layer II of medial entorhinal cortex spike amplitude Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. (NeuroElectro data) (PubMed) 71.5 ± 4.9 (5) 71.5 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 73.4 ± 1.4 (26) 73.4 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude Chronic changes in synaptic responses of entorhinal and hippocampal neurons after amino-oxyacetic acid (AOAA)-induced entorhinal cortical neuron loss. (NeuroElectro data) (PubMed) 12.1 ± 0.41 -- Data Table
Medial entorhinal cortex layer II stellate cell spike amplitude from resting Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 102.5 ± 2.9 (18) 102.5 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike half-width Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 0.9 (18) 0.9 (ms) Data Table
Medial entorhinal cortex layer II stellate cell spike half-width Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 0.7 ± 0.03 (66) 0.7 (ms) Data Table
Medial entorhinal cortex layer II stellate cell Stellate-like “Sag” neurons in layer II of medial entorhinal cortex spike half-width Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. (NeuroElectro data) (PubMed) 1.8 ± 0.1 (5) 1.8 (ms) Data Table
Medial entorhinal cortex layer II stellate cell spike half-width Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 0.77 ± 0.03 (66) 0.77 (ms) Data Table
Medial entorhinal cortex layer II stellate cell medial entorhinal cortex layer II regular-adapting stellate cell spike half-width Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. (NeuroElectro data) (PubMed) 0.98 ± 0.04 (15) 0.98 (ms) Data Table
Medial entorhinal cortex layer II stellate cell spike half-width Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. (NeuroElectro data) (PubMed) 0.79 ± 0.03 (18) 0.79 (ms) Data Table
Medial entorhinal cortex layer II stellate cell spike half-width Enhanced actions of adenosine in medial entorhinal cortex layer II stellate neurons in temporal lobe epilepsy are mediated via A(1)-receptor activation. (NeuroElectro data) (PubMed) 1.1 ± 0.06 (19) 1.1 (ms) Data Table
Medial entorhinal cortex layer II stellate cell spike max rise slope Enhanced actions of adenosine in medial entorhinal cortex layer II stellate neurons in temporal lobe epilepsy are mediated via A(1)-receptor activation. (NeuroElectro data) (PubMed) 223.1 ± 6.3 (19) 223.1 (mV/ms) Data Table
Medial entorhinal cortex layer II stellate cell spike max rise slope Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. (NeuroElectro data) (PubMed) 248.9 ± 11.0 (18) 248.9 (mV/ms) Data Table
Medial entorhinal cortex layer II stellate cell spike peak Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 32.8 ± 2.1 (66) 32.8 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike peak Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 32.2 ± 2.6 (66) 32.2 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike rise time Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 0.65 ± 0.03 (66) 0.65 (ms) Data Table
Medial entorhinal cortex layer II stellate cell spike rise time Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 0.58 ± 0.02 (66) 0.58 (ms) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) -44.7 ± 1.45 (11) -44.7 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -42.1 ± 0.8 (66) -42.1 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) -42.5 ± 0.7 (13) -42.5 (mV) Data Table
Medial entorhinal cortex layer II stellate cell medial entorhinal cortex layer II regular-adapting stellate cell spike threshold Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. (NeuroElectro data) (PubMed) -52.8 ± 0.8 (15) -52.8 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Enhanced actions of adenosine in medial entorhinal cortex layer II stellate neurons in temporal lobe epilepsy are mediated via A(1)-receptor activation. (NeuroElectro data) (PubMed) -45.8 ± 0.5 (19) -45.8 (mV) Data Table
Medial entorhinal cortex layer II stellate cell Entorhinal cortex layer 2/3 stellate EGFP-positive excitatory neurons spike threshold Selective functional interactions between excitatory and inhibitory cortical neurons and differential contribution to persistent activity of the slow oscillation. (NeuroElectro data) (PubMed) -52.8 ± 0.8 (16) -52.8 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -52.4 ± 0.7 (26) -52.4 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -43.1 ± 0.4 (66) -43.1 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -54.3 ± 0.8 (26) -54.3 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) -46.1 ± 0.7 (18) -46.1 (mV) Data Table
Medial entorhinal cortex layer II stellate cell Medial entorhinal cortex layer II projection neurons spike threshold Membrane properties of identified lateral and medial perforant pathway projection neurons. (NeuroElectro data) (PubMed) -52.6 ± 0.6 (32) -52.6 (mV) Data Table
Medial entorhinal cortex layer II stellate cell Stellate-like “Sag” neurons in layer II of medial entorhinal cortex spike threshold Differential contribution of kainate receptors to excitatory postsynaptic currents in superficial layer neurons of the rat medial entorhinal cortex. (NeuroElectro data) (PubMed) -44.5 ± 0.6 (5) -44.5 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. (NeuroElectro data) (PubMed) -42.9 ± 0.5 (18) -42.9 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike threshold Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) -53.9 ± 1.0 (26) -53.9 (mV) Data Table
Medial entorhinal cortex layer II stellate cell spike width Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) 0.59 ± 0.02 (11) 0.59 (ms) Data Table
Medial entorhinal cortex layer II stellate cell Medial entorhinal cortex layer II projection neurons spike width Membrane properties of identified lateral and medial perforant pathway projection neurons. (NeuroElectro data) (PubMed) 1.2 (32) 1.2 (ms) Data Table
Medial entorhinal cortex layer II stellate cell spike width Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. (NeuroElectro data) (PubMed) 0.6 ± 0.01 (13) 0.6 (ms) Data Table
View data in graphical form Report miscurated data