Subiculum pyramidal cell |
Presubicular pyramidal cells
|
adaptation ratio |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
0.72
(17)
|
0.72 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II irregular-spiking neurons
|
adaptation ratio (other) |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
25.0
± 5.0
(15)
|
25.0 (None)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II-III regular-spiking neurons
|
adaptation ratio (other) |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
8.0
± 1.0
(116)
|
8.0 (None)
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
ADP amplitude |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
1.1
± 1.9
(11)
|
1.1 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing cell
|
AHP amplitude |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
3.0
± 1.3
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
AHP amplitude |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
-2.7
± 2.0
(11)
|
2.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
AHP amplitude |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
2.7
± 0.6
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
AHP amplitude |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
3.0
|
--
|
Data Table |
Subiculum pyramidal cell |
|
AHP amplitude |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
AHP amplitude |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
-2.0
± 2.1
(11)
|
2.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing cell
|
AHP amplitude |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
3.5
± 0.44
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
AHP amplitude |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
AHP amplitude |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
AHP amplitude |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
4.03
± 0.2
|
--
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
AHP amplitude |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
-14.7
(17)
|
14.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst spiking pyramidal cell
|
cell capacitance |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
17.0
± 3.0
(18)
|
17.0 (pF)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
cell capacitance |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
14.0
± 4.0
(7)
|
14.0 (pF)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
cell capacitance |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
29.0
± 7.0
(13)
|
29.0 (pF)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst spiking pyramidal cell
|
cell capacitance |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
32.0
± 4.0
(22)
|
32.0 (pF)
|
Data Table |
Subiculum pyramidal cell |
Burst and Regular firing subicular neurons
|
fast AHP amplitude |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
5.9
± 0.4
|
5.9 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing pyramidal neuron
|
fast AHP amplitude |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
6.7
± 0.9
(8)
|
6.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst firing pyramidal neuron
|
fast AHP amplitude |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
5.5
± 0.4
(18)
|
5.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
|
fast AHP voltage |
Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus.
(NeuroElectro data)
(PubMed)
|
-57.6
± 0.7
(25)
|
-57.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
FI slope |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
270.0
(17)
|
270.0 (Hz/nA)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II irregular-spiking neurons
|
first spike latency |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
35.0
± 3.0
(15)
|
35.0 (ms)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer 2 pyramidal cell
|
first spike latency |
Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum.
(NeuroElectro data)
(PubMed)
|
25.0
± 1.7
(87)
|
25.0 (ms)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II-III regular-spiking neurons
|
first spike latency |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
25.0
± 1.0
(116)
|
25.0 (ms)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
first spike latency |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
27.0
(17)
|
27.0 (ms)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II fast-spiking neurons
|
first spike latency |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
13.0
± 2.0
(12)
|
13.0 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
input resistance |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
97.0
± 13.0
(7)
|
97.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Ventral subiculum regular spiking pyramidal neuron
|
input resistance |
Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum.
(NeuroElectro data)
(PubMed)
|
57.5
± 5.7
(8)
|
57.5 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
input resistance |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
115.0
± 12.0
(13)
|
115.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to orbitofrontal cortex
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
55.5
± 4.5
(50)
|
55.5 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to medial entorhinal cortex
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
47.5
± 2.8
(28)
|
47.5 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to presubiculum
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
47.4
± 5.5
(23)
|
47.4 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Burst and Regular firing subicular neurons
|
input resistance |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
46.9
± 1.7
|
46.9 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
input resistance |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
250.0
(17)
|
250.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
input resistance |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
99.7
± 41.6
(11)
|
99.7 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst spiking pyramidal cell
|
input resistance |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
79.0
± 3.0
(22)
|
79.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Neuron
|
input resistance |
Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term potentiation at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
48.0
± 3.0
(38)
|
48.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum strong bursting glutamergic cell
|
input resistance |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
83.0
± 22.0
(17)
|
83.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II irregular-spiking neurons
|
input resistance |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
264.0
± 22.0
(15)
|
264.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to nucleus accumbens
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
52.6
± 3.1
(64)
|
52.6 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to lateral entorhinal cortex
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
52.3
± 3.9
(51)
|
52.3 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
sublculum regular-spiking glutamergic cell
|
input resistance |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
181.0
± 69.0
(12)
|
181.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum fast-spiking inhibitory interneuron
|
input resistance |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
298.0
± 151.0
(8)
|
298.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal neuron
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
60.8
± 2.0
(218)
|
60.8 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum weak bursting glutamergic cell
|
input resistance |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
91.0
± 16.0
(17)
|
91.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
input resistance |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
36.3
± 2.5
|
36.3 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Burst and Regular firing subicular neurons
|
input resistance |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
28.7
± 1.7
|
28.7 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing pyramidal neuron
|
input resistance |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
46.9
± 1.7
(9)
|
46.9 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer 2 pyramidal cell
|
input resistance |
Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum.
(NeuroElectro data)
(PubMed)
|
328.0
± 10.0
(87)
|
328.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to amygdala
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
62.9
± 4.4
(33)
|
62.9 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to retrosplenial cortex
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
44.7
± 2.3
(43)
|
44.7 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst firing pyramidal neuron
|
input resistance |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
28.7
± 1.7
(20)
|
28.7 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum bursting pyramidal neuron
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
41.6
± 0.9
(188)
|
41.6 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Cell
|
input resistance |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
84.0
± 5.7
(55)
|
84.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
|
input resistance |
Adenosine A1 receptors presynaptically modulate excitatory synaptic input onto subiculum neurons.
(NeuroElectro data)
(PubMed)
|
76.4
± 1.9
(8)
|
76.4 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
input resistance |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
39.7
± 1.5
|
39.7 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II-III regular-spiking neurons
|
input resistance |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
330.0
± 8.0
(116)
|
330.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
|
input resistance |
Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus.
(NeuroElectro data)
(PubMed)
|
41.5
± 2.1
(25)
|
41.5 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst spiking pyramidal cell
|
input resistance |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
59.0
± 5.0
(18)
|
59.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to thalamic nucleus
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
53.6
± 3.2
(68)
|
53.6 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to ventromedial hypothalamus
|
input resistance |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
45.9
± 3.3
(46)
|
45.9 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Regular-Spiking Pyramidal Cell
|
input resistance |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
120.1
± 14.3
(49)
|
120.1 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II fast-spiking neurons
|
input resistance |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
341.0
± 35.0
(12)
|
341.0 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
input resistance |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
36.9
± 1.6
|
36.9 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
input resistance |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
84.1
± 21.2
(11)
|
84.1 (MΩ)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer 2 pyramidal cell
|
maximum firing rate |
Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum.
(NeuroElectro data)
(PubMed)
|
40.0
± 2.0
(87)
|
40.0 (Hz)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II fast-spiking neurons
|
maximum firing rate |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
39.0
± 4.5
(12)
|
39.0 (Hz)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II-III regular-spiking neurons
|
maximum firing rate |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
35.0
± 1.7
(116)
|
35.0 (Hz)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
maximum firing rate |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
33.0
(17)
|
33.0 (Hz)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II irregular-spiking neurons
|
maximum firing rate |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
13.0
± 1.8
(15)
|
13.0 (Hz)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
membrane time constant |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
28.0
(17)
|
28.0 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
membrane time constant |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
6.4
± 3.4
(11)
|
6.4 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
membrane time constant |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
19.6
± 2.2
|
19.6 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
membrane time constant |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
22.6
± 2.0
|
22.6 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
membrane time constant |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
6.5
± 3.6
(11)
|
6.5 (ms)
|
Data Table |
Subiculum pyramidal cell |
|
membrane time constant |
Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus.
(NeuroElectro data)
(PubMed)
|
12.7
± 0.7
(25)
|
12.7 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
membrane time constant |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
18.8
± 1.6
|
18.8 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum strong bursting glutamergic cell
|
membrane time constant |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
11.9
± 2.6
(17)
|
11.9 (ms)
|
Data Table |
Subiculum pyramidal cell |
sublculum regular-spiking glutamergic cell
|
membrane time constant |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
12.4
± 2.5
(12)
|
12.4 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum fast-spiking inhibitory interneuron
|
membrane time constant |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
17.8
± 3.1
(8)
|
17.8 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum weak bursting glutamergic cell
|
membrane time constant |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
10.6
± 2.6
(17)
|
10.6 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst spiking pyramidal cell
|
resting membrane potential |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
-59.0
± 2.0
(22)
|
-59.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to orbitofrontal cortex
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-68.4
± 0.7
(50)
|
-68.4 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to presubiculum
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-68.7
± 0.8
(23)
|
-68.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
resting membrane potential |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
-66.1
± 6.2
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
resting membrane potential |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
-65.6
± 0.8
|
-65.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
|
resting membrane potential |
Adenosine A1 receptors presynaptically modulate excitatory synaptic input onto subiculum neurons.
(NeuroElectro data)
(PubMed)
|
-62.4
± 0.8
(8)
|
-62.4 (mV)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
resting membrane potential |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
-78.0
(17)
|
-78.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing pyramidal neuron
|
resting membrane potential |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
67.5
± 1.2
(9)
|
-67.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to retrosplenial cortex
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-69.3
± 0.8
(43)
|
-69.3 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst firing pyramidal neuron
|
resting membrane potential |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
68.7
± 0.9
(20)
|
-68.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
resting membrane potential |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
-66.9
± 4.9
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Cell
|
resting membrane potential |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
-58.6
± 0.5
(55)
|
-58.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
|
resting membrane potential |
Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus.
(NeuroElectro data)
(PubMed)
|
-64.3
± 0.8
(25)
|
-64.3 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Regular-Spiking Pyramidal Cell
|
resting membrane potential |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
-57.9
± 0.8
(49)
|
-57.9 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
resting membrane potential |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
-65.6
± 7.5
(11)
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to nucleus accumbens
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-67.6
± 0.5
(64)
|
-67.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to lateral entorhinal cortex
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-68.0
± 0.6
(51)
|
-68.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing cell
|
resting membrane potential |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
-69.4
± 6.3
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
resting membrane potential |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
-67.47
± 0.77
|
--
|
Data Table |
Subiculum pyramidal cell |
Ventral subiculum regular spiking pyramidal neuron
|
resting membrane potential |
Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum.
(NeuroElectro data)
(PubMed)
|
-73.4
± 1.0
(8)
|
-73.4 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
resting membrane potential |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
-66.5
± 0.8
|
-66.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum strong bursting glutamergic cell
|
resting membrane potential |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
-63.2
± 2.6
(17)
|
-63.2 (mV)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II irregular-spiking neurons
|
resting membrane potential |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
-69.0
± 1.0
(15)
|
-69.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
resting membrane potential |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
-65.7
± 5.8
|
--
|
Data Table |
Subiculum pyramidal cell |
sublculum regular-spiking glutamergic cell
|
resting membrane potential |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
-63.8
± 4.9
(12)
|
-63.8 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
resting membrane potential |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
-66.7
± 0.8
|
-66.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to amygdala
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-69.5
± 0.9
(33)
|
-69.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum fast-spiking inhibitory interneuron
|
resting membrane potential |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
-61.8
± 5.6
(8)
|
-61.8 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal neuron
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-68.4
± 0.3
(218)
|
-68.4 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum weak bursting glutamergic cell
|
resting membrane potential |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
-63.5
± 3.6
(17)
|
-63.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst spiking pyramidal cell
|
resting membrane potential |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
-59.0
± 1.0
(18)
|
-59.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to medial entorhinal cortex
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-70.7
± 0.6
(28)
|
-70.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II fast-spiking neurons
|
resting membrane potential |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
-62.0
± 1.0
(12)
|
-62.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Neuron
|
resting membrane potential |
Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term potentiation at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
-66.7
± 0.7
(38)
|
-66.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer 2 pyramidal cell
|
resting membrane potential |
Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum.
(NeuroElectro data)
(PubMed)
|
-65.0
± 0.5
(87)
|
-65.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
resting membrane potential |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
-67.0
± 6.8
|
--
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II-III regular-spiking neurons
|
resting membrane potential |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
-66.0
± 1.0
(116)
|
-66.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
|
resting membrane potential |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
-64.0
± 5.0
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum bursting pyramidal neuron
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-69.7
± 0.3
(188)
|
-69.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
resting membrane potential |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
-59.6
± 4.5
(11)
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to thalamic nucleus
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-69.5
± 0.5
(68)
|
-69.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to ventromedial hypothalamus
|
resting membrane potential |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-70.3
± 0.5
(46)
|
-70.3 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
resting membrane potential |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
-58.0
± 1.0
(7)
|
-58.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing cell
|
resting membrane potential |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
-66.47
± 1.05
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
resting membrane potential |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
-58.0
± 2.0
(13)
|
-58.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Burst and Regular firing subicular neurons
|
resting membrane potential |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
68.5
± 0.7
|
-68.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
|
rheobase |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
15.0
± 3.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
rheobase |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
234.0
± 14.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing cell
|
rheobase |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
55.2
± 8.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
rheobase |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
0.133
± 0.015
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing cell
|
rheobase |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
0.165
± 0.029
|
--
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
rheobase |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
84.0
(17)
|
84.0 (pA)
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
rheobase |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
314.0
± 34.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
rheobase |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
rheobase |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
283.0
± 28.0
|
283.0 (pA)
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
rheobase |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
rheobase |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Ventral subiculum regular spiking pyramidal neuron
|
rheobase |
Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum.
(NeuroElectro data)
(PubMed)
|
135.0
± 25.0
(8)
|
135.0 (pA)
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
rheobase |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
53.0
± 8.0
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal neuron
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.56
± 0.12
(218)
|
0.641025641026 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to ventromedial hypothalamus
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.24
± 0.09
(46)
|
1.24 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
sag ratio |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
13.6
± 5.8
(11)
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to thalamic nucleus
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.58
± 0.15
(68)
|
1.58 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Cell
|
sag ratio |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
0.81
± 0.01
(55)
|
0.81 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
sag ratio |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
5.1
± 7.1
(11)
|
--
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II irregular-spiking neurons
|
sag ratio |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
1.8
± 0.2
(15)
|
0.018 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
sag ratio |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
0.79
± 0.02
|
0.79 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer 2 pyramidal cell
|
sag ratio |
Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum.
(NeuroElectro data)
(PubMed)
|
2.1
± 0.2
(87)
|
0.021 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum bursting pyramidal neuron
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.98
± 0.07
(188)
|
1.02040816327 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to orbitofrontal cortex
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.55
± 0.13
(50)
|
1.55 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to medial entorhinal cortex
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.55
± 0.14
(28)
|
1.55 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to presubiculum
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.74
± 0.14
(23)
|
1.74 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II fast-spiking neurons
|
sag ratio |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
1.9
± 0.6
(12)
|
0.019 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
sag ratio |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
0.79
± 0.01
|
0.79 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II-III regular-spiking neurons
|
sag ratio |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
2.2
± 0.2
(116)
|
0.022 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
sag ratio |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
13.7
± 9.5
(11)
|
--
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
sag ratio |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
1.04
(17)
|
1.04 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst spiking pyramidal cell
|
sag ratio |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
0.74
± 0.02
(18)
|
0.74 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Regular-Spiking Pyramidal Cell
|
sag ratio |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
0.85
± 0.01
(49)
|
0.85 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
sag ratio |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
7.1
± 8.0
(11)
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
sag ratio |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
0.83
± 0.04
(7)
|
0.83 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to nucleus accumbens
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.67
± 0.29
(64)
|
1.67 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to lateral entorhinal cortex
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.72
± 0.2
(51)
|
1.72 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
sag ratio |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
12.4
± 6.5
(11)
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Neuron
|
sag ratio |
Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term potentiation at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
0.8
± 0.01
(38)
|
0.8 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
sag ratio |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
0.88
± 0.02
(13)
|
0.88 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to amygdala
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.33
± 0.16
(33)
|
1.33 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to retrosplenial cortex
|
sag ratio |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
1.38
± 0.09
(43)
|
1.38 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst spiking pyramidal cell
|
sag ratio |
Different levels of Ih determine distinct temporal integration in bursting and regular-spiking neurons in rat subiculum.
(NeuroElectro data)
(PubMed)
|
0.69
± 0.02
(22)
|
0.69 (ratio)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
sag ratio |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
5.2
± 4.9
(11)
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
sag ratio |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
0.8
± 0.02
|
0.8 (ratio)
|
Data Table |
Subiculum pyramidal cell |
Burst and Regular firing subicular neurons
|
slow AHP amplitude |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
0.8
± 0.3
|
0.8 (mV)
|
Data Table |
Subiculum pyramidal cell |
Burst and Regular firing subicular neurons
|
slow AHP amplitude |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
4.8
± 1.1
|
4.8 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing pyramidal neuron
|
slow AHP amplitude |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
4.8
± 1.1
(8)
|
4.8 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst firing pyramidal neuron
|
slow AHP amplitude |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
0.8
± 0.3
(18)
|
0.8 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
spike amplitude |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
66.9
± 7.3
(11)
|
66.9 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Regular-Spiking Pyramidal Cell
|
spike amplitude |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
78.6
± 2.9
(49)
|
78.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
spike amplitude |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
93.0
± 3.3
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Neuron
|
spike amplitude |
Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term potentiation at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
69.5
± 0.9
(38)
|
69.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
Ventral subiculum regular spiking pyramidal neuron
|
spike amplitude |
Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum.
(NeuroElectro data)
(PubMed)
|
93.9
± 2.0
(8)
|
93.9 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
spike amplitude |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
95.4
± 2.3
|
95.4 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
spike amplitude |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
66.2
± 10.7
(10)
|
66.2 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Cell
|
spike amplitude |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
83.4
± 3.5
(55)
|
83.4 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
spike amplitude |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
90.2
± 2.9
|
--
|
Data Table |
Subiculum pyramidal cell |
|
spike amplitude |
Adenosine A1 receptors presynaptically modulate excitatory synaptic input onto subiculum neurons.
(NeuroElectro data)
(PubMed)
|
109.6
± 7.3
(8)
|
109.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum bursting pyramidal neuron
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
93.0
± 0.5
(188)
|
75.3 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to thalamic nucleus
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
90.6
± 0.6
(68)
|
90.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to ventromedial hypothalamus
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
93.2
± 0.8
(46)
|
93.2 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to orbitofrontal cortex
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
94.5
± 1.2
(50)
|
94.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to medial entorhinal cortex
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
92.8
± 0.9
(28)
|
92.8 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to presubiculum
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
93.0
± 1.2
(23)
|
93.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to nucleus accumbens
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
85.1
± 2.6
(64)
|
85.1 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to lateral entorhinal cortex
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
90.5
± 2.6
(51)
|
90.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal neuron
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
91.0
± 0.7
(218)
|
73.3 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to amygdala
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
91.6
± 1.0
(33)
|
91.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to retrosplenial cortex
|
spike amplitude from resting |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
94.2
± 1.1
(43)
|
94.2 (mV)
|
Data Table |
Subiculum pyramidal cell |
|
spike amplitude from resting |
Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus.
(NeuroElectro data)
(PubMed)
|
82.9
± 1.3
(25)
|
82.9 (mV)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
spike half-width |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
0.56
(17)
|
0.56 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Neuron
|
spike half-width |
Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term potentiation at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
0.99
± 0.04
(38)
|
0.99 (ms)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II fast-spiking neurons
|
spike half-width |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
2.5
± 0.3
(12)
|
2.5 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
spike half-width |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
0.83
± 0.03
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
spike half-width |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
0.79
± 0.02
|
0.79 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to amygdala
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.83
± 0.03
(33)
|
0.83 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to retrosplenial cortex
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.57
± 0.01
(43)
|
0.57 (ms)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II-III regular-spiking neurons
|
spike half-width |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
2.2
± 0.1
(116)
|
2.2 (ms)
|
Data Table |
Subiculum pyramidal cell |
Ventral subiculum regular spiking pyramidal neuron
|
spike half-width |
Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum.
(NeuroElectro data)
(PubMed)
|
0.72
± 0.02
(8)
|
0.72 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal neuron
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.72
± 0.01
(218)
|
0.72 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Cell
|
spike half-width |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
0.92
± 0.06
(55)
|
0.92 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to thalamic nucleus
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.64
± 0.01
(68)
|
0.64 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to ventromedial hypothalamus
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.62
± 0.01
(46)
|
0.62 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
spike half-width |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
1.0
± 0.1
(10)
|
1.0 (ms)
|
Data Table |
Subiculum pyramidal cell |
|
spike half-width |
Adenosine A1 receptors presynaptically modulate excitatory synaptic input onto subiculum neurons.
(NeuroElectro data)
(PubMed)
|
0.86
± 0.03
(8)
|
0.86 (ms)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II irregular-spiking neurons
|
spike half-width |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
2.8
± 0.2
(15)
|
2.8 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum bursting pyramidal neuron
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.66
± 0.01
(188)
|
0.66 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Regular-Spiking Pyramidal Cell
|
spike half-width |
Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
0.97
± 0.07
(49)
|
0.97 (ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
spike half-width |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
0.84
± 0.03
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
spike half-width |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
1.0
± 0.1
(11)
|
1.0 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to orbitofrontal cortex
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.77
± 0.02
(50)
|
0.77 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to medial entorhinal cortex
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.72
± 0.02
(28)
|
0.72 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to presubiculum
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.68
± 0.02
(23)
|
0.68 (ms)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer 2 pyramidal cell
|
spike half-width |
Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum.
(NeuroElectro data)
(PubMed)
|
2.3
± 0.1
(87)
|
2.3 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to nucleus accumbens
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.67
± 0.01
(64)
|
0.67 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to lateral entorhinal cortex
|
spike half-width |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
0.74
± 0.02
(51)
|
0.74 (ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to retrosplenial cortex
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-169.0
± 4.0
(43)
|
169.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
spike max decay slope |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
-88.8
± 5.1
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to amygdala
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-97.0
± 3.0
(33)
|
97.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to ventromedial hypothalamus
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-141.0
± 3.0
(46)
|
141.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to thalamic nucleus
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-129.0
± 2.0
(68)
|
129.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to medial entorhinal cortex
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-121.0
± 3.0
(28)
|
121.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to presubiculum
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-138.0
± 5.0
(23)
|
138.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
spike max decay slope |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
-134.0
(17)
|
134.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal neuron
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-118.0
± 2.0
(218)
|
118.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
spike max decay slope |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
-103.0
± 5.0
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to orbitofrontal cortex
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-109.0
± 4.0
(50)
|
109.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum bursting pyramidal neuron
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-133.0
± 2.0
(188)
|
133.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
spike max decay slope |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
-110.0
± 5.0
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to nucleus accumbens
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-118.0
± 3.0
(64)
|
118.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to lateral entorhinal cortex
|
spike max decay slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-109.0
± 4.0
(51)
|
109.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to amygdala
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
331.0
± 7.0
(33)
|
331.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to medial entorhinal cortex
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
356.0
± 6.0
(28)
|
356.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
|
spike max rise slope |
Adenosine A1 receptors presynaptically modulate excitatory synaptic input onto subiculum neurons.
(NeuroElectro data)
(PubMed)
|
309.8
± 10.1
(8)
|
309.8 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
spike max rise slope |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
517.0
(17)
|
517.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum bursting pyramidal neuron
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
367.0
± 3.0
(188)
|
367.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to thalamic nucleus
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
359.0
± 4.0
(68)
|
359.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
spike max rise slope |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
264.0
± 18.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
spike max rise slope |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
299.0
± 17.0
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to ventromedial hypothalamus
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
374.0
± 6.0
(46)
|
374.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to orbitofrontal cortex
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
349.0
± 8.0
(50)
|
349.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to retrosplenial cortex
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
379.0
± 8.0
(43)
|
379.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to presubiculum
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
354.0
± 8.0
(23)
|
354.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to nucleus accumbens
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
327.0
± 13.0
(64)
|
327.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to lateral entorhinal cortex
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
345.0
± 16.0
(51)
|
345.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
spike max rise slope |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
297.0
± 22.0
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal neuron
|
spike max rise slope |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
341.0
± 4.0
(218)
|
341.0 (mV/ms)
|
Data Table |
Subiculum pyramidal cell |
Ventral subiculum regular spiking pyramidal neuron
|
spike rise time |
Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum.
(NeuroElectro data)
(PubMed)
|
479.0
± 22.0
(8)
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing pyramidal neuron
|
spike threshold |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
55.1
± 1.3
(6)
|
-55.1 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum fast-spiking inhibitory interneuron
|
spike threshold |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
-45.0
± 7.0
(8)
|
-45.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum weak bursting glutamergic cell
|
spike threshold |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
-49.0
± 3.0
(17)
|
-49.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II-III regular-spiking neurons
|
spike threshold |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
-40.0
± 1.0
(116)
|
-40.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum burst firing pyramidal neuron
|
spike threshold |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
61.2
± 2.9
(7)
|
-61.2 (mV)
|
Data Table |
Subiculum pyramidal cell |
|
spike threshold |
Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus.
(NeuroElectro data)
(PubMed)
|
-50.0
± 0.6
(25)
|
-50.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to nucleus accumbens
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-48.8
± 0.9
(64)
|
-48.8 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to lateral entorhinal cortex
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-49.0
± 1.5
(51)
|
-49.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal neuron
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-50.5
± 0.4
(218)
|
-50.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum strong bursting pyramidal cell
|
spike threshold |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
-46.8
± 0.8
|
--
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II fast-spiking neurons
|
spike threshold |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
-40.0
± 1.0
(12)
|
-40.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
|
spike threshold |
Adenosine A1 receptors presynaptically modulate excitatory synaptic input onto subiculum neurons.
(NeuroElectro data)
(PubMed)
|
-44.9
± 0.9
(8)
|
-44.9 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to amygdala
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-50.6
± 0.8
(33)
|
-50.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to retrosplenial cortex
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-53.0
± 0.4
(43)
|
-53.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum bursting pyramidal neuron
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-52.2
± 0.3
(188)
|
-52.2 (mV)
|
Data Table |
Subiculum pyramidal cell |
Ventral subiculum regular spiking pyramidal neuron
|
spike threshold |
Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum.
(NeuroElectro data)
(PubMed)
|
-48.5
± 1.1
(8)
|
-48.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to thalamic nucleus
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-51.3
± 0.5
(68)
|
-51.3 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to ventromedial hypothalamus
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-52.7
± 0.5
(46)
|
-52.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum weak bursting pyramidal cell
|
spike threshold |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
-45.2
± 0.6
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum regular spiking pyramidal cell
|
spike threshold |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
-51.8
± 9.6
(9)
|
-51.8 (mV)
|
Data Table |
Subiculum pyramidal cell |
Burst and Regular firing subicular neurons
|
spike threshold |
Kindling induces a transient suppression of afterhyperpolarization in rat subicular neurons.
(NeuroElectro data)
(PubMed)
|
58.4
± 1.8
|
-58.4 (mV)
|
Data Table |
Subiculum pyramidal cell |
Presubicular pyramidal cells
|
spike threshold |
Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum.
(NeuroElectro data)
(PubMed)
|
-35.5
(17)
|
-35.5 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum intrinsically bursting pyramidal cells
|
spike threshold |
Cell type-specific separation of subicular principal neurons during network activities.
(NeuroElectro data)
(PubMed)
|
-59.4
± 8.5
(11)
|
-59.4 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to orbitofrontal cortex
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-52.0
± 0.5
(50)
|
-52.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to medial entorhinal cortex
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-51.7
± 0.5
(28)
|
-51.7 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum pyramidal neuron projecting to presubiculum
|
spike threshold |
Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
(NeuroElectro data)
(PubMed)
|
-52.2
± 1.2
(23)
|
-52.2 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum Burst-Spiking Pyramidal Neuron
|
spike threshold |
Activation of dopamine D1/D5 receptors facilitates the induction of presynaptic long-term potentiation at hippocampal output synapses.
(NeuroElectro data)
(PubMed)
|
11.3
± 0.7
(38)
|
-11.3 (mV)
|
Data Table |
Subiculum pyramidal cell |
subiculum strong bursting glutamergic cell
|
spike threshold |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
-50.0
± 3.0
(17)
|
-50.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular spiking pyramidal cell
|
spike threshold |
Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
(NeuroElectro data)
(PubMed)
|
-46.6
± 0.9
|
-46.6 (mV)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer II irregular-spiking neurons
|
spike threshold |
Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy.
(NeuroElectro data)
(PubMed)
|
-41.0
± 1.0
(15)
|
-41.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
sublculum regular-spiking glutamergic cell
|
spike threshold |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
-44.0
± 4.0
(12)
|
-44.0 (mV)
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
spike width |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing cell
|
spike width |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
spike width |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
spike width |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
0.7
± 1.12
|
--
|
Data Table |
Subiculum pyramidal cell |
|
spike width |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
1.2
± 0.1
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum regular firing cell
|
spike width |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
0.73
± 0.12
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
spike width |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
Subiculum bursting cell
|
spike width |
Lifetime memories from persistently supple synapses.
(NeuroElectro data)
(PubMed)
|
160.0
|
--
|
Data Table |
Subiculum pyramidal cell |
subiculum strong bursting glutamergic cell
|
spontaneous firing rate |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
0.135
± 0.295
(17)
|
0.135 (Hz)
|
Data Table |
Subiculum pyramidal cell |
sublculum regular-spiking glutamergic cell
|
spontaneous firing rate |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
0.014
± 0.039
(12)
|
0.014 (Hz)
|
Data Table |
Subiculum pyramidal cell |
subiculum fast-spiking inhibitory interneuron
|
spontaneous firing rate |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
0.275
± 0.413
(8)
|
0.275 (Hz)
|
Data Table |
Subiculum pyramidal cell |
Presubiculum layer 2 pyramidal cell
|
spontaneous firing rate |
Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum.
(NeuroElectro data)
(PubMed)
|
25.0
± 1.0
(87)
|
25.0 (Hz)
|
Data Table |
Subiculum pyramidal cell |
subiculum weak bursting glutamergic cell
|
spontaneous firing rate |
Synaptic contributions to focal and widespread spatiotemporal dynamics in the isolated rat subiculum in vitro.
(NeuroElectro data)
(PubMed)
|
0.091
± 0.207
(17)
|
0.091 (Hz)
|
Data Table |