AboutNeuron TypesElectrophysiology PropertiesArticlesFAQsData/APIGet Involved

first spike latency

Common definition: Duration to first AP following a depolarizing current step of fixed amplitude

Electrophysiological values of first spike latency across neuron types from literature:

    Normalization criteria:
  • Values are unchanged from those reported. Since authors use different APs for defining first spike latency (e.g., evoked using rheobase current, via synaptic input, etc.), please refer to individual articles for specific methodology.

Neuron electrophysiology data values (Table form)

Neuron Type Neuron Description Ephys Prop Article Extracted Value Standardized Value Content Source
Basalis nucleus cholinergic neuron Basal forebrain ChAT-expressing late-firing neurons first spike latency Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. (NeuroElectro data) (PubMed) 343.0 ± 76.0 (33) 343.0 (ms) Data Table
Basalis nucleus cholinergic neuron Basal forebrain ChAT-expressing early-firing neurons first spike latency Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. (NeuroElectro data) (PubMed) 107.0 ± 53.0 (70) 107.0 (ms) Data Table
BNST (ALG) Bed nucleus of the stria terminalus anterolateral sector cell first spike latency CGRP inhibits neurons of the bed nucleus of the stria terminalis: implications for the regulation of fear and anxiety. (NeuroElectro data) (PubMed) 98.2 ± 13.3 (26) 98.2 (ms) Data Table
BNST (ALG) anterolateral sector BNST central amygdala-projecting non-ChR2-expressing nonresponsive cell first spike latency Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. (NeuroElectro data) (PubMed) 50.0 ± 9.2 (15) 50.0 (ms) Data Table
BNST (ALG) anterolateral sector BNST central amygdala-projecting regular spiking ChR2-expressing responsive cell first spike latency Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. (NeuroElectro data) (PubMed) 94.7 ± 12.6 (15) 94.7 (ms) Data Table
BNST common spiny neuron BNST type II corticotropin-releasing factor expressing neuron first spike latency A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. (NeuroElectro data) (PubMed) 83.53 ± 3.6 (4) 83.53 (ms) Data Table
BNST common spiny neuron BNST type I corticotropin-releasing factor expressing neuron first spike latency A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. (NeuroElectro data) (PubMed) 183.9 ± 14.9 (2) 183.9 (ms) Data Table
BNST common spiny neuron BNST VTA-projecting type II neuron first spike latency A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. (NeuroElectro data) (PubMed) 193.3 ± 31.1 (2) 193.3 (ms) Data Table
BNST common spiny neuron BNST VTA-projecting type I neuron first spike latency A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. (NeuroElectro data) (PubMed) 448.7 ± 254.5 (2) 448.7 (ms) Data Table
BNST common spiny neuron BNST VTA-projecting neuron first spike latency A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. (NeuroElectro data) (PubMed) 122.4 ± 15.2 (4) 122.4 (ms) Data Table
BNST common spiny neuron BNST corticotropin-releasing factor expressing uncharacterized neuron first spike latency A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. (NeuroElectro data) (PubMed) 84.0 ± 5.9 (13) 84.0 (ms) Data Table
BNST common spiny neuron BNST type III corticotropin-releasing factor expressing neuron first spike latency A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. (NeuroElectro data) (PubMed) 857.9 ± 230.5 (4) 857.9 (ms) Data Table
Cerebellum granule cell first spike latency Increased excitability and altered action potential waveform in cerebellar granule neurons of the Ts65Dn mouse model of Down syndrome. (NeuroElectro data) (PubMed) 182.9 ± 18.7 (33) 182.9 (ms) Data Table
Cerebellum Purkinje cell first spike latency Excitability and synaptic alterations in the cerebellum of APP/PS1 mice. (NeuroElectro data) (PubMed) 3.9 ± 0.8 (14) 3.9 (ms) Data Table
Cerebellum Purkinje cell first spike latency Excitability and synaptic alterations in the cerebellum of APP/PS1 mice. (NeuroElectro data) (PubMed) 12.2 ± 3.7 (8) 12.2 (ms) Data Table
Dentate gyrus basket cell Dentate Gyrus GABA-ergic Fast spiking Parvalbumin-expressing Basket Interneuron first spike latency Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. (NeuroElectro data) (PubMed) 1.6 ± 0.2 (4) 1.6 (ms) Data Table
Dentate gyrus granule cell Dentate gyrus type 2 mature granule cell first spike latency Impaired firing properties of dentate granule neurons in an Alzheimer's disease animal model are rescued by PPARγ agonism. (NeuroElectro data) (PubMed) 265.3 ± 17.4 265.3 (ms) Data Table
Dentate gyrus granule cell Dentate gyrus inferior blade granule cell first spike latency Impaired firing properties of dentate granule neurons in an Alzheimer's disease animal model are rescued by PPARγ agonism. (NeuroElectro data) (PubMed) 159.2 ± 21.0 (19) 159.2 (ms) Data Table
Dentate gyrus HICAP cell Dentate Gyrus GABA-ergic Non-fast spiking C/A pathway-associated Interneuron first spike latency Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. (NeuroElectro data) (PubMed) 3.8 ± 0.3 3.8 (ms) Data Table
Dentate gyrus hilar cell Dentate Gyrus GABA-ergic Non-fast spiking Cannabinoid receptor type 1-expressing Interneuron first spike latency Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. (NeuroElectro data) (PubMed) 3.4 ± 0.3 (5) 3.4 (ms) Data Table
Dentate gyrus HIPP cell Dentate Gyrus GABA-ergic Non-fast spiking PP-associated axon terminal Interneuron first spike latency Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. (NeuroElectro data) (PubMed) 3.7 ± 0.4 (4) 3.7 (ms) Data Table
Dorsal root ganglion cell Isolectin B(4)-negative peptidergic neurons first spike latency Differential slow inactivation and use-dependent inhibition of Nav1.8 channels contribute to distinct firing properties in IB4+ and IB4- DRG neurons. (NeuroElectro data) (PubMed) 104.8 ± 19.4 104.8 (ms) Data Table
Dorsal root ganglion cell Isolectin B(4)-positive nonpeptidergic neurons first spike latency Differential slow inactivation and use-dependent inhibition of Nav1.8 channels contribute to distinct firing properties in IB4+ and IB4- DRG neurons. (NeuroElectro data) (PubMed) 226.1 ± 27.0 226.1 (ms) Data Table
Hippocampus CA1 IS-I neuron Hippocampus CA1 strongly adapting GABAergic interneurons first spike latency Molecular and electrophysiological characterization of GFP-expressing CA1 interneurons in GAD65-GFP mice. (NeuroElectro data) (PubMed) 70.0 ± 78.0 (5) 70.0 (ms) Data Table
Hippocampus CA1 IS-I neuron Hippocampus CA1 delayed onset, adapting irregular spiking GABAergic interneurons first spike latency Molecular and electrophysiological characterization of GFP-expressing CA1 interneurons in GAD65-GFP mice. (NeuroElectro data) (PubMed) 513.0 ± 68.0 (4) 513.0 (ms) Data Table
Hippocampus CA1 IS-I neuron Hippocampus CA1 delayed onset, adapting fast spiking GABAergic interneuron first spike latency Molecular and electrophysiological characterization of GFP-expressing CA1 interneurons in GAD65-GFP mice. (NeuroElectro data) (PubMed) 525.0 ± 80.0 (5) 525.0 (ms) Data Table
Hippocampus CA1 IS-I neuron Hippocampus CA1 delayed onset, adapting regular spiking GABAergic interneuron first spike latency Molecular and electrophysiological characterization of GFP-expressing CA1 interneurons in GAD65-GFP mice. (NeuroElectro data) (PubMed) 496.0 ± 40.0 (12) 496.0 (ms) Data Table
Hippocampus CA1 IS-I neuron Hippocampus CA1 immediate onset, adapting GABAergic interneurons first spike latency Molecular and electrophysiological characterization of GFP-expressing CA1 interneurons in GAD65-GFP mice. (NeuroElectro data) (PubMed) 29.0 ± 73.0 (6) 29.0 (ms) Data Table
Hippocampus CA1 ivy neuron first spike latency Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells. (NeuroElectro data) (PubMed) 511.0 ± 51.0 (13) 511.0 (ms) Data Table
Hippocampus CA1 neurogliaform cell Hippocampus CA1 non-nitric oxide synthase expressing neurogliaform cell first spike latency Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells. (NeuroElectro data) (PubMed) 354.0 ± 66.0 (10) 354.0 (ms) Data Table
Hippocampus CA1 neurogliaform cell Hippocampus CA1 nitric oxide synthase expressing neurogliaform cell first spike latency Common origins of hippocampal Ivy and nitric oxide synthase expressing neurogliaform cells. (NeuroElectro data) (PubMed) 376.0 ± 40.0 (25) 376.0 (ms) Data Table
Hippocampus CA1 oriens lacunosum moleculare neuron first spike latency Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. (NeuroElectro data) (PubMed) 92.3 (12) 92.3 (ms) Data Table
Hippocampus CA1 oriens lacunosum moleculare neuron Hippocampus CA1 and CA2 non-fast spiking stramum oriens neuron first spike latency Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys. (NeuroElectro data) (PubMed) 232.7 ± 90.5 (15) 232.7 (ms) Data Table
Hippocampus CA1 pyramidal cell first spike latency Hyperexcitability of distal dendrites in hippocampal pyramidal cells after chronic partial deafferentation. (NeuroElectro data) (PubMed) 313.9 ± 35.9 (21) 313.9 (ms) Data Table
Hippocampus CA1 pyramidal cell first spike latency Altered synaptic and non-synaptic properties of CA1 pyramidal neurons in Kv4.2 knockout mice. (NeuroElectro data) (PubMed) 41.52 ± 4.27 (21) 41.52 (ms) Data Table
Hippocampus CA1 pyramidal cell first spike latency Dietary cholesterol modulates the excitability of rabbit hippocampal CA1 pyramidal neurons. (NeuroElectro data) (PubMed) 69.85 ± 14.0 (25) 69.85 (ms) Data Table
Hippocampus CA1 pyramidal cell first spike latency Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. (NeuroElectro data) (PubMed) 44.7 (19) 44.7 (ms) Data Table
Hippocampus CA1 pyramidal cell Hippocampus CA1 non-fast spiking stratum oriens pyramidal-like cell first spike latency Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys. (NeuroElectro data) (PubMed) 53.8 ± 5.5 (8) 53.8 (ms) Data Table
Hippocampus CA1 pyramidal cell first spike latency NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. (NeuroElectro data) (PubMed) 48.0 ± 13.9 (6) 48.0 (ms) Data Table
Hippocampus CA1 pyramidal cell Hippocampus CA1 non-fast spiking pyramidal neuron first spike latency Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys. (NeuroElectro data) (PubMed) 60.0 ± 10.5 (7) 60.0 (ms) Data Table
Hippocampus CA1 pyramidal cell first spike latency Slowly inactivating component of Na+ current in peri-somatic region of hippocampal CA1 pyramidal neurons. (NeuroElectro data) (PubMed) 171.4 ± 22.6 171.4 (ms) Data Table
Hippocampus CA1 pyramidal cell first spike latency Learning increases intrinsic excitability of hippocampal interneurons. (NeuroElectro data) (PubMed) 7.83 ± 0.49 (32) 7.83 (ms) Data Table
Hippocampus CA2 pyramidal neuron Hippocampus CA2 non-fast spiking pyramidal-like neuron first spike latency Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys. (NeuroElectro data) (PubMed) 47.1 ± 4.5 (7) 47.1 (ms) Data Table
Hippocampus CA2 pyramidal neuron Hippocampus CA2 non-fasting spiking pyramidal neuron first spike latency Morphological and electrophysiological properties of pyramidal-like neurons in the stratum oriens of Cornu ammonis 1 and Cornu ammonis 2 area of Proechimys. (NeuroElectro data) (PubMed) 120.9 ± 20.9 (11) 120.9 (ms) Data Table
Lateral amygdala projection neuron lateral central amygdala BNST-projecting unresponsive cell first spike latency Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. (NeuroElectro data) (PubMed) 118.8 ± 28.0 (16) 118.8 (ms) Data Table
Lateral amygdala projection neuron lateral central amygdala BNST-projecting responsive cell first spike latency Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. (NeuroElectro data) (PubMed) 67.6 ± 14.6 (12) 67.6 (ms) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 111.6 ± 29.0 (66) 111.6 (ms) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 20.7 ± 3.3 (26) 20.7 (ms) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 18.1 ± 1.3 (26) 18.1 (ms) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 28.6 ± 2.9 (26) 28.6 (ms) Data Table
Medial entorhinal cortex layer II stellate cell first spike latency Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. (NeuroElectro data) (PubMed) 58.3 ± 5.8 (66) 58.3 (ms) Data Table
Medial entorhinal cortex layer III pyramidal cell Medial entorhinal cortex layer III projection cell first spike latency Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat. (NeuroElectro data) (PubMed) 98.7 ± 4.2 (89) 98.7 (ms) Data Table
Medial entorhinal cortex layer III pyramidal cell Medial entorhinal cortex layer III projection cell first spike latency Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat. (NeuroElectro data) (PubMed) 45.2 ± 4.2 (61) 45.2 (ms) Data Table
Medial entorhinal cortex layer III pyramidal cell Medial entorhinal cortex layer III local circuit cell first spike latency Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat. (NeuroElectro data) (PubMed) 48.4 ± 5.6 (12) 48.4 (ms) Data Table
Medial entorhinal cortex layer III pyramidal cell Medial entorhinal cortex layer III local circuit cell first spike latency Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat. (NeuroElectro data) (PubMed) 119.6 ± 9.0 (23) 119.6 (ms) Data Table
Medial Nucleus of Trapezoid Body neuron first spike latency Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1. (NeuroElectro data) (PubMed) 4.2 ± 0.3 (29) 4.2 (ms) Data Table
Medial Nucleus of Trapezoid Body neuron first spike latency Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1. (NeuroElectro data) (PubMed) 8.6 ± 0.5 (29) 8.6 (ms) Data Table
Medial Nucleus of Trapezoid Body neuron first spike latency Kv1.1-containing channels are critical for temporal precision during spike initiation. (NeuroElectro data) (PubMed) 1.23 ± 0.03 1.23 (ms) Data Table
Neocortex basket cell Dorsolateral prefrontal cortex wide arbor fast-spiking interneuron first spike latency Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. (NeuroElectro data) (PubMed) 60.0 ± 59.0 (25) 60.0 (ms) Data Table
Neocortex basket cell Neocortex medial ganglionic eminence fast spiking interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 68.3 (71) 68.3 (ms) Data Table
Neocortex basket cell first spike latency Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. (NeuroElectro data) (PubMed) 220.0 ± 159.0 (31) 220.0 (ms) Data Table
Neocortex basket cell Primary auditory cortex fast-spiking interneurons first spike latency Characterization of thalamocortical responses of regular-spiking and fast-spiking neurons of the mouse auditory cortex in vitro and in silico. (NeuroElectro data) (PubMed) 266.13 ± 304.1 (16) 266.13 (ms) Data Table
Neocortex basket cell first spike latency Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. (NeuroElectro data) (PubMed) 71.0 ± 69.0 (39) 71.0 (ms) Data Table
Neocortex basket cell Visual cortex layer 2/3 parvalbumin-expressing interneuron first spike latency Synapse-associated protein 97 regulates the membrane properties of fast-spiking parvalbumin interneurons in the visual cortex. (NeuroElectro data) (PubMed) 395.0 ± 79.0 (20) 395.0 (ms) Data Table
Neocortex basket cell Visual cortex layer 2/3 parvalbumin-expressing interneuron first spike latency Synapse-associated protein 97 regulates the membrane properties of fast-spiking parvalbumin interneurons in the visual cortex. (NeuroElectro data) (PubMed) 462.0 ± 57.0 (14) 462.0 (ms) Data Table
Neocortex basket cell Prefrontal cortex fast spiking interneuron first spike latency Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. (NeuroElectro data) (PubMed) 20.9 ± 3.2 (8) 20.9 (ms) Data Table
Neocortex basket cell Dorsolateral prefrontal cortex layer 2-3 fast-spiking interneuron first spike latency Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. (NeuroElectro data) (PubMed) 129.0 ± 147.0 (67) 129.0 (ms) Data Table
Neocortex basket cell Dorsolateral prefrontal cortex medium arbor fast-spiking interneuron first spike latency Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. (NeuroElectro data) (PubMed) 65.0 ± 60.0 (26) 65.0 (ms) Data Table
Neocortex basket cell Dorsolateral prefrontal cortex local arbor fast-spiking interneuron first spike latency Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. (NeuroElectro data) (PubMed) 159.0 ± 156.0 (24) 159.0 (ms) Data Table
Neocortex bouquet double cell Dorsolateral prefrontal cortex layer 2-3 intermediate-spiking double bouquet interneuron first spike latency Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. (NeuroElectro data) (PubMed) 70.0 ± 68.0 (63) 70.0 (ms) Data Table
Neocortex chandelier cell Dorsolateral prefrontal cortex chandelier fast-spiking interneuron first spike latency Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. (NeuroElectro data) (PubMed) 207.0 ± 212.0 (12) -- Data Table
Neocortex interneuron deep Neocortex layer II-IV depolarization-induced suppression of inhibition insensitive multipolar Nonadapting interneuron first spike latency Cell type-specific regulation of inhibition via cannabinoid type 1 receptors in rat neocortex. (NeuroElectro data) (PubMed) 10.0 ± 1.5 (5) -- Data Table
Neocortex interneuron deep Neocortex layer II-IV depolarization-induced suppression of inhibition sensitive multipolar Nonadapting interneuron first spike latency Cell type-specific regulation of inhibition via cannabinoid type 1 receptors in rat neocortex. (NeuroElectro data) (PubMed) 11.0 ± 2.0 (13) -- Data Table
Neocortex interneuron deep Neocortex layer II-IV depolarization-induced suppression of inhibition sensitive multipolar adapting interneuron first spike latency Cell type-specific regulation of inhibition via cannabinoid type 1 receptors in rat neocortex. (NeuroElectro data) (PubMed) 17.0 ± 1.4 (6) -- Data Table
Neocortex interneuron deep Presubiculum parvalbumin interneuron first spike latency Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. (NeuroElectro data) (PubMed) 13.0 (46) 13.0 (ms) Data Table
Neocortex interneuron deep Presubiculum somatostatin-expressing interneuron first spike latency Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. (NeuroElectro data) (PubMed) 15.0 (61) 15.0 (ms) Data Table
Neocortex interneuron deep Presubiculum somatostatin-expressing interneuron first spike latency Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. (NeuroElectro data) (PubMed) 21.0 (35) 21.0 (ms) Data Table
Neocortex interneuron deep Visual Cortex layer 2/3 parvalbumin-expressing continuous-firing interneuron first spike latency Subgroups of parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. (NeuroElectro data) (PubMed) 590.0 ± 60.0 (22) 590.0 (ms) Data Table
Neocortex interneuron deep Neocortex layer 2-3 fast spiking Transcription factor Er81 expressing parvalbumin-expressing internuron first spike latency Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. (NeuroElectro data) (PubMed) 297.0 ± 16.8 (22) -- Data Table
Neocortex interneuron deep Visual Cortex layer 2/3 parvalbumin-expressing continuous-firing high-frequency interneuron first spike latency Subgroups of parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. (NeuroElectro data) (PubMed) 360.0 ± 130.0 (11) 360.0 (ms) Data Table
Neocortex interneuron deep Neocortex layer 2-3 fast spiking non-transcription factor Er81 expressing parvalbumin-expressing internuron first spike latency Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. (NeuroElectro data) (PubMed) 147.6 ± 24.5 (11) -- Data Table
Neocortex interneuron deep Visual Cortex layer 2/3 parvalbumin-expressing weakly stuttering interneuron first spike latency Subgroups of parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. (NeuroElectro data) (PubMed) 460.0 ± 60.0 (18) 460.0 (ms) Data Table
Neocortex interneuron deep barrel cortex layer 6a GABAergic inhibitory interneuron first spike latency Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. (NeuroElectro data) (PubMed) 73.1 ± 77.5 (32) 73.1 (ms) Data Table
Neocortex interneuron deep Visual Cortex layer 2/3 parvalbumin-expressing strongly stuttering interneuron first spike latency Subgroups of parvalbumin-expressing interneurons in layers 2/3 of the visual cortex. (NeuroElectro data) (PubMed) 490.0 ± 60.0 (31) 490.0 (ms) Data Table
Neocortex layer 4 stellate cell Primary auditory cortex layer 3/4 regular-spiking pyramidal neurons first spike latency Characterization of thalamocortical responses of regular-spiking and fast-spiking neurons of the mouse auditory cortex in vitro and in silico. (NeuroElectro data) (PubMed) 223.09 ± 237.2 (31) 223.09 (ms) Data Table
Neocortex layer 4 stellate cell Perirhinal cortex layer 4 single-spiking neurons first spike latency Predominance of late-spiking neurons in layer VI of rat perirhinal cortex. (NeuroElectro data) (PubMed) 81.0 ± 29.0 (5) 81.0 (ms) Data Table
Neocortex layer 4 stellate cell Perirhinal cortex layer 4 fast-spiking neurons first spike latency Predominance of late-spiking neurons in layer VI of rat perirhinal cortex. (NeuroElectro data) (PubMed) 79.3 ± 29.1 (3) 79.3 (ms) Data Table
Neocortex layer 4 stellate cell Perirhinal cortex layer 4 late-spiking neurons first spike latency Predominance of late-spiking neurons in layer VI of rat perirhinal cortex. (NeuroElectro data) (PubMed) 3165.0 ± 140.0 (67) 3165.0 (ms) Data Table
Neocortex pyramidal cell layer 2-3 Dorsolateral prefrontal cortex layer 2/3 regular spiking low input resistance supragranular pyramidal cells first spike latency Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. (NeuroElectro data) (PubMed) 136.0 ± 10.0 (27) 136.0 (ms) Data Table
Neocortex pyramidal cell layer 2-3 Somatosensory cortex layer 2-3 pyramidal neurons first spike latency Effects of ethanol on rat somatosensory cortical neurons. (NeuroElectro data) (PubMed) 0.36 ± 0.02 (10) 0.36 (ms) Data Table
Neocortex pyramidal cell layer 2-3 Dorsolateral prefrontal cortex layer 2-3 pyramidal regular-spiking cell first spike latency Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. (NeuroElectro data) (PubMed) 127.0 ± 70.0 (41) 127.0 (ms) Data Table
Neocortex pyramidal cell layer 2-3 Dorsolateral prefrontal cortex layer 2/3 intermediate spiking supragranular pyramidal cells first spike latency Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. (NeuroElectro data) (PubMed) 117.0 ± 8.0 (24) 117.0 (ms) Data Table
Neocortex pyramidal cell layer 2-3 Dorsolateral prefrontal cortex layer 2/3 low threshold spiking supragranular pyramidal cells first spike latency Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. (NeuroElectro data) (PubMed) 126.0 ± 17.0 (13) 126.0 (ms) Data Table
Neocortex pyramidal cell layer 2-3 Dorsolateral prefrontal cortex layer 2/3 regular spiking high input resistance supragranular pyramidal cells first spike latency Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. (NeuroElectro data) (PubMed) 150.0 ± 20.0 (13) 150.0 (ms) Data Table
Neocortex pyramidal cell layer 5-6 Somatosensory Cortex Layer V Barrel Mixed Burst/Spike Cortical Neuron first spike latency Differential modulatory effects of norepinephrine on synaptically driven responses of layer V barrel field cortical neurons. (NeuroElectro data) (PubMed) 0.32 ± 0.05 (62) 0.32 (ms) Data Table
Neocortex pyramidal cell layer 5-6 Medial Prefrontal Cortex Layer V/VI Pyramidal Cell first spike latency Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex. (NeuroElectro data) (PubMed) 406.89 ± 25.3 (22) 406.89 (ms) Data Table
Neocortex pyramidal cell layer 5-6 Somatosensory cortex layer 5 pyramidal neurons first spike latency Effects of ethanol on rat somatosensory cortical neurons. (NeuroElectro data) (PubMed) 0.28 ± 0.01 (20) 0.28 (ms) Data Table
Neocortex pyramidal cell layer 5-6 Somatosensory Cortex Layer V Barrel Intrinsic Burst Cortical Neuron first spike latency Differential modulatory effects of norepinephrine on synaptically driven responses of layer V barrel field cortical neurons. (NeuroElectro data) (PubMed) 0.32 ± 0.05 (9) 0.32 (ms) Data Table
Neocortex pyramidal cell layer 5-6 Prefrontal Cortex Layer 5 Pyramidal Neurons first spike latency Modulation of neuronal excitability by serotonin-NMDA interactions in prefrontal cortex. (NeuroElectro data) (PubMed) 71.1 ± 3.9 (6) 71.1 (ms) Data Table
Neocortex pyramidal cell layer 5-6 neocortex layer 5 large pyramidal cell first spike latency Maturation of "neocortex isole" in vivo in mice. (NeuroElectro data) (PubMed) 0.08 ± 0.02 (20) 80.0 (ms) Data Table
Neocortex pyramidal cell layer 5-6 Layer 6a barrel cortex pyramidal corticothalamic neuron with large terminal arbors first spike latency Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. (NeuroElectro data) (PubMed) 67.9 ± 22.1 (34) 67.9 (ms) Data Table
Neocortex pyramidal cell layer 5-6 barrel cortex layer 6a corticocortical pyramidal neuron with infragranular arborization axons first spike latency Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. (NeuroElectro data) (PubMed) 137.1 ± 50.6 (38) 137.1 (ms) Data Table
Neocortex uncharacterized cell neocortex layer 2/3 GABAergic late-spiking subtype 1 Htr3a-expressing interneuron first spike latency The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. (NeuroElectro data) (PubMed) 376.3 ± 79.8 (45) 376.3 (ms) Data Table
Neocortex uncharacterized cell somatosensory cortex CGE-derived burst non-adapting 2 interneuron first spike latency Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. (NeuroElectro data) (PubMed) 90.5 ± 58.9 (5) 90.5 (ms) Data Table
Neocortex uncharacterized cell prefrontal cortex neurogliaform Inhibitory Neuron first spike latency Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. (NeuroElectro data) (PubMed) 59.0 ± 36.0 (30) 59.0 (ms) Data Table
Neocortex uncharacterized cell somatosensory cortex CGE-derived late spiking 1 interneuron first spike latency Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. (NeuroElectro data) (PubMed) 348.6 ± 104.6 (26) 348.6 (ms) Data Table
Neocortex uncharacterized cell prefrontal cortex neurogliaform Inhibitory Neuron first spike latency Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. (NeuroElectro data) (PubMed) 209.0 ± 122.0 (19) 209.0 (ms) Data Table
Neocortex uncharacterized cell somatosensory cortex CGE-derived late spiking 2 interneuron first spike latency Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. (NeuroElectro data) (PubMed) 174.8 ± 117.7 (19) 174.8 (ms) Data Table
Neocortex uncharacterized cell somatosensory cortex CGE-derived delayed intrinsic bursting interneuron first spike latency Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. (NeuroElectro data) (PubMed) 208.7 ± 141.9 (5) 208.7 (ms) Data Table
Neocortex uncharacterized cell neocortex layer 2/3 GABAergic delayed non-fast-spiking Htr3a-expressing interneuron first spike latency The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. (NeuroElectro data) (PubMed) 14.1 ± 9.8 (3) 14.1 (ms) Data Table
Neocortex uncharacterized cell somatosensory cortex CGE-derived sigmoid intrinsic bursting interneuron first spike latency Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. (NeuroElectro data) (PubMed) 245.8 ± 103.0 (3) 245.8 (ms) Data Table
Neocortex uncharacterized cell somatosensory cortex CGE-derived fast-adapting interneuron first spike latency Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. (NeuroElectro data) (PubMed) 192.4 ± 127.7 (18) 192.4 (ms) Data Table
Neocortex uncharacterized cell somatosensory cortex CGE-derived irregular spiking interneuron first spike latency Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. (NeuroElectro data) (PubMed) 303.8 ± 71.6 (6) 303.8 (ms) Data Table
Neocortex uncharacterized cell somatosensory cortex CGE-derived delayed non-fast spiking 3 interneuron first spike latency Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. (NeuroElectro data) (PubMed) 286.4 ± 137.5 (5) 286.4 (ms) Data Table
Neostriatum cholinergic cell first spike latency Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. (NeuroElectro data) (PubMed) 281.0 ± 13.2 (65) 281.0 (ms) Data Table
Neostriatum cholinergic cell neostriatium long-duration afterhyperpolarization cholinergic cell first spike latency A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. (NeuroElectro data) (PubMed) 207.0 ± 1322.0 (8) 207.0 (ms) Data Table
Neostriatum cholinergic cell Neostriatum aspiny fast-firing cell first spike latency A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. (NeuroElectro data) (PubMed) 116.0 ± 742.0 (25) 116.0 (ms) Data Table
Neostriatum cholinergic cell Neostriatum fast-spiking cell first spike latency A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. (NeuroElectro data) (PubMed) 86.0 ± 1482.0 (7) 86.0 (ms) Data Table
Neostriatum cholinergic cell Neostriatum aspiny low-threshold spike cholinergic cell first spike latency A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. (NeuroElectro data) (PubMed) 65.0 ± 45.0 (9) 65.0 (ms) Data Table
Neostriatum gabaergic interneuron Neostriatum fast-spiking interneuron first spike latency Quantitative estimate of synaptic inputs to striatal neurons during up and down states in vitro. (NeuroElectro data) (PubMed) 199.0 ± 28.0 (7) 199.0 (ms) Data Table
Neostriatum gabaergic interneuron first spike latency Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. (NeuroElectro data) (PubMed) 248.5 ± 16.0 (45) 248.5 (ms) Data Table
Neostriatum medium spiny neuron dorsolateral striatum spiny projection neuron first spike latency Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. (NeuroElectro data) (PubMed) 147.0 ± 5.0 (74) 147.0 (ms) Data Table
Neostriatum medium spiny neuron Neostriatum spiny projection neuron first spike latency Quantitative estimate of synaptic inputs to striatal neurons during up and down states in vitro. (NeuroElectro data) (PubMed) 379.0 ± 25.0 (16) 379.0 (ms) Data Table
Neostriatum medium spiny neuron Neostriatum medium spiny GABAergic neurons first spike latency Inositol 1,4,5-triphosphate drives glutamatergic and cholinergic inhibition selectively in spiny projection neurons in the striatum. (NeuroElectro data) (PubMed) 567.0 ± 34.0 (6) 567.0 (ms) Data Table
Neostriatum medium spiny neuron Neostriatum medium spiny GABAergic neurons first spike latency Inositol 1,4,5-triphosphate drives glutamatergic and cholinergic inhibition selectively in spiny projection neurons in the striatum. (NeuroElectro data) (PubMed) 560.0 ± 25.0 (6) 560.0 (ms) Data Table
Neostriatum medium spiny neuron Basal ganglia paleostriatum augmentatum / lobus parolfactorius inward-rectifying spiny neuron first spike latency Electrophysiological properties of avian basal ganglia neurons recorded in vitro. (NeuroElectro data) (PubMed) 378.0 ± 70.0 -- Data Table
Neostriatum medium spiny neuron first spike latency Dopamine modulates excitability of spiny neurons in the avian basal ganglia. (NeuroElectro data) (PubMed) 208.0 ± 68.0 (15) 208.0 (ms) Data Table
Neostriatum medium spiny neuron first spike latency A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. (NeuroElectro data) (PubMed) 339.0 ± 1052.0 (92) 339.0 (ms) Data Table
Neostriatum medium spiny neuron Neostriatum medium spiny GABAergic neurons first spike latency Inositol 1,4,5-triphosphate drives glutamatergic and cholinergic inhibition selectively in spiny projection neurons in the striatum. (NeuroElectro data) (PubMed) 551.0 ± 37.0 (8) 551.0 (ms) Data Table
Neostriatum medium spiny neuron Basal ganglia paleostriatum augmentatum / lobus parolfactorius inward-rectifying anomalous spiny neuron first spike latency Electrophysiological properties of avian basal ganglia neurons recorded in vitro. (NeuroElectro data) (PubMed) 58.0 ± 58.0 -- Data Table
Neostriatum medium spiny neuron first spike latency Intrinsic excitability varies by sex in prepubertal striatal medium spiny neurons. (NeuroElectro data) (PubMed) 307.0 ± 19.0 (30) 307.0 (ms) Data Table
Neostriatum medium spiny neuron first spike latency Dopamine modulates excitability of spiny neurons in the avian basal ganglia. (NeuroElectro data) (PubMed) 175.0 ± 73.4 (16) 175.0 (ms) Data Table
Neostriatum medium spiny neuron first spike latency Intrinsic excitability varies by sex in prepubertal striatal medium spiny neurons. (NeuroElectro data) (PubMed) 313.0 ± 15.0 (33) 313.0 (ms) Data Table
Neostriatum medium spiny neuron first spike latency Dopamine modulates excitability of spiny neurons in the avian basal ganglia. (NeuroElectro data) (PubMed) 207.0 ± 125.0 (14) 207.0 (ms) Data Table
Neostriatum medium spiny neuron first spike latency Differences in striatal spiny neuron action potentials between the spontaneously hypertensive and Wistar-Kyoto rat strains. (NeuroElectro data) (PubMed) 72.7 (24) 72.7 (ms) Data Table
Neostriatum medium spiny neuron first spike latency Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. (NeuroElectro data) (PubMed) 414.6 ± 4.3 (50) 414.6 (ms) Data Table
Neostriatum medium spiny neuron first spike latency P2Y1 receptor modulation of Ca2+-activated K+ currents in medium-sized neurons from neonatal rat striatal slices. (NeuroElectro data) (PubMed) 79.4 ± 11.7 (7) 79.4 (ms) Data Table
Neostriatum medium spiny neuron first spike latency Heterogeneity of spike frequency adaptation among medium spiny neurones from the rat striatum. (NeuroElectro data) (PubMed) 324.6 ± 22.0 (139) 324.6 (ms) Data Table
Nucleus accumbens medium spiny neuron first spike latency Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability. (NeuroElectro data) (PubMed) 312.8 ± 45.3 (7) -- Data Table
Nucleus accumbens shell neuron first spike latency Exposure to cocaine dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. (NeuroElectro data) (PubMed) 173.0 ± 11.0 (9) 173.0 (ms) Data Table
Nucleus accumbens shell neuron first spike latency Exposure to cocaine dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. (NeuroElectro data) (PubMed) 176.0 ± 12.0 176.0 (ms) Data Table
Nucleus accumbens shell neuron first spike latency Exposure to cocaine dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. (NeuroElectro data) (PubMed) 188.0 ± 27.0 188.0 (ms) Data Table
Olfactory bulb (main) Blanes cell Olfactory bulb (main) deep short-axon inhibitory cell first spike latency Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb. (NeuroElectro data) (PubMed) 182.5 ± 184.3 (9) 182.5 (ms) Data Table
Olfactory bulb (main) granule cell first spike latency Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb. (NeuroElectro data) (PubMed) 511.6 ± 529.6 (31) 511.6 (ms) Data Table
Other Central Amygdala medial sector responsive neuron first spike latency Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. (NeuroElectro data) (PubMed) 108.3 ± 29.9 (15) 108.3 (ms) Data Table
Other Basolateral Amygdala Parvalbumin-Positive Delayed Firing Interneurons first spike latency Networks of parvalbumin-positive interneurons in the basolateral amygdala. (NeuroElectro data) (PubMed) 108.2 ± 12.1 (35) 108.2 (ms) Data Table
Other Presubiculum layer 2-3 single spiking neuron first spike latency Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. (NeuroElectro data) (PubMed) 47.0 ± 10.0 (9) 47.0 (ms) Data Table
Other Medial Amygdala PosteroVentral Non-GABAergic pyramidal or multipolar spiny dendrite multi-branched Neurons first spike latency Functional properties and projections of neurons in the medial amygdala. (NeuroElectro data) (PubMed) 166.0 ± 23.0 (42) 166.0 (ms) Data Table
Other Neostriatum long-lasting afterhyperpolarization interneuron first spike latency Heterogeneity of spike frequency adaptation among medium spiny neurones from the rat striatum. (NeuroElectro data) (PubMed) 230.8 ± 53.2 (11) 230.8 (ms) Data Table
Other Central Amygdala medial sector nonresponsive neuron first spike latency Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala. (NeuroElectro data) (PubMed) 83.6 ± 35.5 (8) 83.6 (ms) Data Table
Other Basolateral Amygdala Parvalbumin-Positive Accommodating Interneurons first spike latency Networks of parvalbumin-positive interneurons in the basolateral amygdala. (NeuroElectro data) (PubMed) 46.6 ± 6.4 (33) 46.6 (ms) Data Table
Other Presubiculum layer 2-3 fast adapting neuron first spike latency Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. (NeuroElectro data) (PubMed) 13.0 ± 2.0 (10) 13.0 (ms) Data Table
Other hippocampus CA1 oriens-radiatum cell first spike latency Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. (NeuroElectro data) (PubMed) 36.8 (11) 36.8 (ms) Data Table
Other Medial Amygdala PosteroVentral GABAergic multipolar spiny dendrite spare-branched Type 3 Neurons first spike latency Functional properties and projections of neurons in the medial amygdala. (NeuroElectro data) (PubMed) 169.0 ± 35.0 (28) 169.0 (ms) Data Table
Other pericoerulear locus neuropeptide S-expressing neuron first spike latency Dynorphin-Dependent Reduction of Excitability and Attenuation of Inhibitory Afferents of NPS Neurons in the Pericoerulear Region of Mice. (NeuroElectro data) (PubMed) 12.2 (14) -- Data Table
Other Neocortex medial ganglionic eminence superficial layer late spiking interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 399.5 (17) 399.5 (ms) Data Table
Other Prefrontal cortex layer 1 late-spiking GABAergic interneurons first spike latency Thalamic control of layer 1 circuits in prefrontal cortex. (NeuroElectro data) (PubMed) 266.9 ± 21.2 (14) 266.9 (ms) Data Table
Other Basolateral Amygdala Parvalbumin-Positive Stuttering Interneurons first spike latency Networks of parvalbumin-positive interneurons in the basolateral amygdala. (NeuroElectro data) (PubMed) 116.8 ± 28.8 (15) 116.8 (ms) Data Table
Other Presubiculum layer 2-3 regular spiking neuron first spike latency Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. (NeuroElectro data) (PubMed) 25.0 ± 1.0 (114) 25.0 (ms) Data Table
Other Medial Amygdala PosteroVentral Non-GABAergic multipolar spiny dendrite spare-branched Neurons first spike latency Functional properties and projections of neurons in the medial amygdala. (NeuroElectro data) (PubMed) 60.0 ± 16.0 (36) 60.0 (ms) Data Table
Other Ventral nucleus of the lateral lemniscus ventral GABAergic inhibitory onset-firing neurons first spike latency Heterogeneity of Intrinsic and Synaptic Properties of Neurons in the Ventral and Dorsal Parts of the Ventral Nucleus of the Lateral Lemniscus. (NeuroElectro data) (PubMed) 2.0 ± 0.1 (34) 2.0 (ms) Data Table
Other somatosensory cortex CGE-derived burst non-adapting 1 interneuron first spike latency Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. (NeuroElectro data) (PubMed) 62.4 ± 15.2 (6) 62.4 (ms) Data Table
Other Basal ganglia paleostriatum augmentatum / lobus parolfactorius low-threshold spike neuron first spike latency Electrophysiological properties of avian basal ganglia neurons recorded in vitro. (NeuroElectro data) (PubMed) 96.0 ± 58.0 -- Data Table
Other Neocortex medial ganglionic eminence initial adapting interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 54.5 (7) 54.5 (ms) Data Table
Other neocortex layer 2/3 GABAergic late-spiking subtype 2 Htr3a-expressing interneuron first spike latency The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. (NeuroElectro data) (PubMed) 224.8 ± 130.1 (15) 224.8 (ms) Data Table
Other Prefrontal cortex layer 1 GABAergic uncharacterized interneurons first spike latency Thalamic control of layer 1 circuits in prefrontal cortex. (NeuroElectro data) (PubMed) 94.0 ± 16.0 (9) 94.0 (ms) Data Table
Other Presubiculum layer 2-3 irregular spiking neuron first spike latency Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. (NeuroElectro data) (PubMed) 35.0 ± 3.0 (15) 35.0 (ms) Data Table
Other Lateral central amygdala early-spiking GABAergic neuron first spike latency Wiring Specificity and Synaptic Diversity in the Mouse Lateral Central Amygdala. (NeuroElectro data) (PubMed) 712.0 ± 70.0 (40) 712.0 (ms) Data Table
Other Ventral nucleus of the lateral lemniscus dorsal GABAergic inhibitory onset-firing neurons first spike latency Heterogeneity of Intrinsic and Synaptic Properties of Neurons in the Ventral and Dorsal Parts of the Ventral Nucleus of the Lateral Lemniscus. (NeuroElectro data) (PubMed) 2.5 ± 0.3 (19) 2.5 (ms) Data Table
Other Basal ganglia paleostriatum augmentatum / lobus parolfactorius aspiny fast-firing neuron first spike latency Electrophysiological properties of avian basal ganglia neurons recorded in vitro. (NeuroElectro data) (PubMed) 147.0 ± 101.0 -- Data Table
Other Neocortex medial ganglionic eminence non-fast spiking 2 interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 104.4 (17) 104.4 (ms) Data Table
Other neocortex layer 2/3 GABAergic burst non-adapting subtype 1 Htr3a-expressing interneuron first spike latency The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. (NeuroElectro data) (PubMed) 70.3 ± 21.4 (18) 70.3 (ms) Data Table
Other Lateral central amygdala late-spiking GABAergic neuron first spike latency Wiring Specificity and Synaptic Diversity in the Mouse Lateral Central Amygdala. (NeuroElectro data) (PubMed) 1721.0 ± 30.0 (50) 1721.0 (ms) Data Table
Other Prefrontal cortex layer 1 non-late-spiking GABAergic interneurons first spike latency Thalamic control of layer 1 circuits in prefrontal cortex. (NeuroElectro data) (PubMed) 71.5 ± 6.6 (11) 71.5 (ms) Data Table
Other Presubiculum layer 2-3 late spiking neuron first spike latency Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. (NeuroElectro data) (PubMed) 258.0 ± 37.0 (4) 258.0 (ms) Data Table
Other Ventral nucleus of the lateral lemniscus dorsal GABAergic inhibitory sustained-firing neurons first spike latency Heterogeneity of Intrinsic and Synaptic Properties of Neurons in the Ventral and Dorsal Parts of the Ventral Nucleus of the Lateral Lemniscus. (NeuroElectro data) (PubMed) 4.0 ± 0.4 (9) 4.0 (ms) Data Table
Other neocortex layer 2/3 GABAergic burst non-adapting subtype 2 Htr3a-expressing interneuron first spike latency The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. (NeuroElectro data) (PubMed) 75.4 ± 41.4 (5) 75.4 (ms) Data Table
Other Neocortex medial ganglionic eminence non-fast spiking 1 interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 104.4 (16) 104.4 (ms) Data Table
Other Stratum radiatum fast-spiking interneurons first spike latency NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. (NeuroElectro data) (PubMed) 21.2 ± 3.1 (5) 21.2 (ms) Data Table
Other dentate gyrus somatostatin-expressing cell first spike latency Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy. (NeuroElectro data) (PubMed) 16.6 ± 4.2 (5) 16.6 (ms) Data Table
Other neocortex layer 2/3 GABAergic irregular spiking bipolar Htr3a-expressing interneuron first spike latency The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. (NeuroElectro data) (PubMed) 259.5 ± 120.5 (30) 259.5 (ms) Data Table
Other Neocortex medial ganglionic eminence deep and superficial layer irregular intrinsic bursting interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 191.0 (9) 191.0 (ms) Data Table
Other Stratum radiatum non-pyramidal regular-spiking non-rebounding cells first spike latency NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. (NeuroElectro data) (PubMed) 23.5 ± 10.8 23.5 (ms) Data Table
Other Presubiculum layer 3 cell first spike latency Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. (NeuroElectro data) (PubMed) 25.0 ± 1.8 (45) 25.0 (ms) Data Table
Other Neocortex medial ganglionic eminence deep and superficial layer regular intrinsic bursting Interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 146.8 (17) 146.8 (ms) Data Table
Other Stratum radiatum non-pyramidal regular-spiking rapidly adapting cells first spike latency NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. (NeuroElectro data) (PubMed) 23.0 ± 6.6 23.0 (ms) Data Table
Other Medial amygdala posteroventral division GFP negative non-GABAergic neurons first spike latency Functional properties and projections of neurons in the medial amygdala. (NeuroElectro data) (PubMed) 116.0 ± 15.0 (79) 116.0 (ms) Data Table
Other neocortex layer 2/3 GABAergic fast-adapting Htr3a-expressing interneuron first spike latency The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. (NeuroElectro data) (PubMed) 18.1 ± 9.9 (16) 18.1 (ms) Data Table
Other Neocortex medial ganglionic eminence superficial layer delayed-fast spiking Interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 376.5 (25) 376.5 (ms) Data Table
Other Medial amygdala posteroventral division GFP positive GABAergic neurons first spike latency Functional properties and projections of neurons in the medial amygdala. (NeuroElectro data) (PubMed) 134.0 ± 18.0 (75) 134.0 (ms) Data Table
Other Stratum radiatum non-pyramidal regular-spiking rebounding cells first spike latency NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. (NeuroElectro data) (PubMed) 34.3 ± 16.7 34.3 (ms) Data Table
Other Central Amygdaloid Nucleus Low-threshold bursting neuron first spike latency Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. (NeuroElectro data) (PubMed) 48.0 ± 3.0 (96) 48.0 (ms) Data Table
Other central amygdala corticotropin-releasing factor expressing neuron first spike latency A corticotropin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of the stria terminalis. (NeuroElectro data) (PubMed) 679.3 ± 114.5 (12) 679.3 (ms) Data Table
Other Presubiculum layer 2-3 initially bursting neuron first spike latency Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. (NeuroElectro data) (PubMed) 28.0 ± 4.0 (23) 28.0 (ms) Data Table
Other Neocortex medial ganglionic eminence non-fast spiking 2 interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 256.9 (6) 256.9 (ms) Data Table
Other Medial Amygdala PosteroVentral GABAergic multipolar spiny dendrite spare-branched Type 1 Neurons first spike latency Functional properties and projections of neurons in the medial amygdala. (NeuroElectro data) (PubMed) 89.0 ± 9.0 (22) 89.0 (ms) Data Table
Other Stratum radiatum irregularly spiking interneurons first spike latency NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. (NeuroElectro data) (PubMed) 150.0 150.0 (ms) Data Table
Other Central Amygdaloid Nucleus regular spiking neuron first spike latency Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. (NeuroElectro data) (PubMed) 50.0 ± 8.0 (16) 50.0 (ms) Data Table
Other Basolateral Amygdala Parvalbumin-Positive Fast Spiking Interneurons first spike latency Networks of parvalbumin-positive interneurons in the basolateral amygdala. (NeuroElectro data) (PubMed) 11.2 ± 2.2 (75) 11.2 (ms) Data Table
Other Presubiculum layer 2-3 stuttering neuron first spike latency Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. (NeuroElectro data) (PubMed) 16.0 ± 2.0 (7) 16.0 (ms) Data Table
Other hippocampus CA1 perisomatic region-targeting fast-spiking interneuron first spike latency Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. (NeuroElectro data) (PubMed) 74.0 (7) 74.0 (ms) Data Table
Other Neocortex medial ganglionic eminence delayed non-fast spiking 1 interneuron first spike latency Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. (NeuroElectro data) (PubMed) 327.1 (11) 327.1 (ms) Data Table
Other Medial Amygdala PosteroVentral GABAergic smooth short dendrite Neurons first spike latency Functional properties and projections of neurons in the medial amygdala. (NeuroElectro data) (PubMed) 200.0 ± 45.0 (16) 200.0 (ms) Data Table
Other Stratum radiatum delayed spiking interneurons first spike latency NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases. (NeuroElectro data) (PubMed) 136.5 ± 43.5 136.5 (ms) Data Table
Other Central Amygdaloid Nucleus late-firing neuron first spike latency Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. (NeuroElectro data) (PubMed) 144.0 ± 9.0 (38) 144.0 (ms) Data Table
Paraventricular hypothalamic nucleus neurons Weakly rectifying paraventricular hypothalamic Type I putative magnocellular neurosecretory cells first spike latency A slow transient potassium current expressed in a subset of neurosecretory neurons of the hypothalamic paraventricular nucleus. (NeuroElectro data) (PubMed) 89.7 ± 8.8 (53) 89.7 (ms) Data Table
Paraventricular hypothalamic nucleus neurons Strongly rectifying paraventricular hypothalamic Type I putative magnocellular neurosecretory cells first spike latency A slow transient potassium current expressed in a subset of neurosecretory neurons of the hypothalamic paraventricular nucleus. (NeuroElectro data) (PubMed) 184.9 ± 15.7 (33) 184.9 (ms) Data Table
Spinal cord ventral horn interneuron FRA first spike latency Response patterns and force relations of monkey spinal interneurons during active wrist movement. (NeuroElectro data) (PubMed) 60.0 ± 219.0 (17) 60.0 (ms) Data Table
Subiculum pyramidal cell Presubiculum layer II irregular-spiking neurons first spike latency Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 35.0 ± 3.0 (15) 35.0 (ms) Data Table
Subiculum pyramidal cell Presubicular pyramidal cells first spike latency Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. (NeuroElectro data) (PubMed) 27.0 (17) 27.0 (ms) Data Table
Subiculum pyramidal cell Presubiculum layer II fast-spiking neurons first spike latency Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 13.0 ± 2.0 (12) 13.0 (ms) Data Table
Subiculum pyramidal cell Presubiculum layer II-III regular-spiking neurons first spike latency Regular-spiking cells in the presubiculum are hyperexcitable in a rat model of temporal lobe epilepsy. (NeuroElectro data) (PubMed) 25.0 ± 1.0 (116) 25.0 (ms) Data Table
Subiculum pyramidal cell Presubiculum layer 2 pyramidal cell first spike latency Electrophysiological and morphological characterization of cells in superficial layers of rat presubiculum. (NeuroElectro data) (PubMed) 25.0 ± 1.7 (87) 25.0 (ms) Data Table